Cayley Thm
조합론에서의 Cayley’s theorem은 완전그래프 $K_{n}$의 서로 다른 spanning tree가 $n^{n-2}$개라는 정리이다. 일반적으로는 그 쓰임보다도 아름다운 증명에 가치를 둔다. Functional graph를 알고 있다는 전제 하에 글을 작성했다. Reference : Miklos Bona - [A Walk through Combinatorics] cf : $[n] := \set{1,\dots,n}.$ Proof of the theorem (By A. Joyal) $K_{n}$의 spanning tree의 개수를 $t_{n}$이라고 두고, $n^{2}t_{n} = n^{n}$임을 보인다. Definition. 정점 $n \ge 1$개의 트리 $T$에서 정점 $a, b$를 골라 $a$를 start, $b$를 end로 부르자....